روش هم مکانی لژاندر-گاوس-راداو برای حل معادلات دیفرانسیل معمولی.
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه تفرش - دانشکده ریاضی
- author فرشته اسلامی
- adviser رضا مختاری نبی الله گودرزوندچگینی محمد افضلی نژاد
- Number of pages: First 15 pages
- publication year 1392
abstract
اکثر پدیده های حقیقی در فیزیک، شیمی، زیست شناسی و اقتصاد... با معادلات دیفرانسیل معمولی توصیف می شوند. یافتن جواب تحلیلی برای این گونه مسایل از پیچیدگی خاصی برخوردار است. این در حالی است که بسیاری از این مسایل دارای جواب تحلیلی معلوم نیستند. بنابراین بایستی این گونه مسایل را با روش عددی حل کرد. در این پایان نامه به حل معادلات دیفرانسیل معمولی با مقادیر اولیه با استفاده از روش هم مکانی، مبتنی بر درون یاب لژاندر-گاوس-رادو می پردازیم. آنالیز همگرایی برای این معادلات انجام شده و دقت طیفی جواب را نشان خواهیم داد. سپس با ترکیب روش هم مکانی با تجزیه دامنه مورد بررسی یک مدل تعمیم یافته برای حل انواع مسایل مقدار اولیه ارائه می نماییم. مثال های عددی در انتهای هر بخش کارایی و دقت بالای این روش را نشان می دهد.
similar resources
روش هم مکانی گاوس-لژاندر انتقال یافته برای حل مسائل مقدار اولیه معادلات دیفرانسیل معمولی مرتبه دوم
معادلات دیفرانسیل معمولی مرتبه ی دوم، طبقه مهمی از معادلات دیفرانسیل هستند که در بسیاری از علوم، رسیدن به نتایج مطلوب، منوط به حل هرچه دقیق تر این معادلات است. این پایان نامه که برگرفته از مرجع [5] می باشد، برای حل معادلات مقدرا اولیه از این طبقه، روشی ارایه نموده است که با افزایش تعداد نقاط موجود در شبکه، به جواب دقیق تری دسترسی پیدا می کنیم. فصل اول، شامل مباحث مقدماتی از جمله معرفی فضاها و...
15 صفحه اولروش هم مکانی طیفی برای حل معادلات دیفرانسیل
روش های هم محلی طیفی دارای دقت بالایی در حل معادلات دیفرانسیل می باشند و معمولا بهترین دقت را با تعداد نقاط کمتر ارائه می دهند .پیاده سازی این روش ها شامل استفاده از ماتریس های دیفرانسیل گیری طیفی می باشد ،این پایان نامه به روش های هم مکانی طیفی که بر درون یابی بر نقاط هم محلی تکیه دارد می پردازد نشان می دهیم که برای محاسبه ماتریس های معرفی شده فقدان دقت به علت خطای روند کردن می باشد و روش ها...
روش هم محلی چندجمله ای های لژاندر برای تقریب جواب معادلات انتگرال- دیفرانسیل فردهلم خطی با تأخیر زمانی
هدف اصلی در این مقاله حل معادلات انتگرال- دیفرانسیل فردهلم خطی با تأخیر زمانی از مراتب بالا است. روش مبتنی بر بسط لژاندر با استفاده از نقاط هم محلی گاوس- لژاندر می باشد. در این روش سری لژاندر قطع شده جواب معادله را در نظر گرفته و معادله انتگرال- دیفرانسیل خطی و شرایط داده شده را به یک معادله ماتریسی تبدیل می کنیم، سپس با استفاده از نقاط هم محلی گاوس- لژاندر، معادله ماتریسی تبدیل به یک دستگاه از...
full textحل عددی معادلات دیفرانسیل معمولی کسری با روش گالرکین ناپیوسته موضعی
در این مقاله، روش گالرکین ناپیوستهی موضعی برای حل معادلات دیفرانسیل معمولی با مرتبهی کسری را در حالت کلی به کار میبریم. در این روش انتخاب (طبیعی) شار عددی آپویند، ما را قادر میسازد تا مسائل مقدار اولیه برای معادلات کسری معمولی را به صورت بازه به بازه و پیشرو در زمان حل کنیم. این بدین معنی است که ما بایستی در هر زیربازه به حل یک دستگاه معادلات از مرتبه پایین $(k+1)times (k+1)$...
full textروش طیفی بر اساس هم محلی لژاندر برای حل معادلات انتگرال–دیفرانسیل ولترا
در این اثر روش های طیفی را برای معادلات انتگرال دیفرانسیلی از نوع ولترا بررسی می کنیم. ابتدا معادله انتگرال دیفرانسیل از نوع ولترا را به صورت معادل با دو معادله انتگرال از نوع دوم نمایش می دهیم و سپس با استفاده از شرایط هم محلی هردو را حل می کنیم. اینجا تابع هسته وسایر توابع بکار رفته در معادله اصلی به قدری هموار هستند که امکان بکار بردن روش های عددی از مرتبه بالا را فراهم می کنند.یک تحلیل خطای...
15 صفحه اولMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه تفرش - دانشکده ریاضی
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023